Some Characterizations of Slant Helices in the Euclidean Space E
نویسندگان
چکیده
In this work, the notion of a slant helix is extended to the space E. First, we introduce the type-2 harmonic curvatures of a regular curve. Thereafter, by using this, we present some necessary and sufficient conditions for a curve to be a slant helix in Euclidean n-space. We also express some integral characterizations of such curves in terms of the curvature functions. Finally, we give some characterizations of slant helices in terms of type-2 harmonic curvatures.
منابع مشابه
Characterizations of Slant Ruled Surfaces in the Euclidean 3-space
In this study, we give the relationships between the conical curvatures of ruled surfaces generated by the unit vectors of the ruling, central normal and central tangent of a ruled surface in the Euclidean 3-space E^3. We obtain differential equations characterizing slant ruled surfaces and if the reference ruled surface is a slant ruled surface, we give the conditions for the surfaces generate...
متن کاملGeneralization of general helices and slant helices
In this work, we use the formal definition of $k$-slant helix cite{ali2} to obtain the intrinsic equations as well as the position vector for emph{slant-slant helices} which a generalization of emph{general helices} and emph{slant helices}. Also, we present some characterizations theorems for $k$-slant helices and derived, in general form, the intrinsic equations for such curves. Thereafter, fr...
متن کاملGeneralized Helices and Singular Points
In this paper, we define X-slant helix in Euclidean 3-space and we obtain helix, slant helix, clad and g-clad helix as special case of the X-slant helix. Then we study Darboux, tangential darboux developable surfaces and their singular points. Especially we show that the striction lines of these surfaces are singular locus of the surfaces.
متن کاملSome Characterizations of Slant Helices in the Euclidean Space En
Inclined curves or so-called general helices are well-known curves in the classical differential geometry of space curves [9] and we refer to the reader for recent works on this type of curves [6, 12]. Recently, Izumiya and Takeuchi have introduced the concept of slant helix in Euclidean 3-space E saying that the normal lines makes a constant angle with a fixed direction [7]. They characterize ...
متن کاملASSOCIATED CURVES OF THE SPACELIKE CURVE VIA THE BISHOP FRAME OF TYPE-2 IN E₁³
The objective of the study in this paper is to define M₁,M₂-direction curves and M₁,M₂-donor curves of the spacelike curve γ via the Bishop frame of type-2 in E₁³. We obtained the necessary and sufficient conditions when the associated curves to be slant helices and general helices via the Bishop frame of type-2 in E₁³. After defining the spherical indicatrices of the associated curves, we obta...
متن کامل